聚乳酸-聚羟基乙酸共聚物(PLGA)
又名聚丙交酯-乙交酯 英文名Poly(lactide-co-glycolide) (PLGA) 分子结构式 外观性状:粉体、块状、颗粒和纤维 材料特点:PLGA是PLA和PGA的共聚物,是脂肪族聚酯中最为常用的一种共聚物,具有生物相容性和生物降解性。LA和GA的比例一般为90:10,80:20,70:30等,分子量5-15万可调,也可根据客户需求定制。由于PLA和PGA的降解速率不同,通过调节两者共聚比例和分子量,能够获得不同降解时间、不同力学性能的可降解高分子材料,适用于组织工程支架、器官支架、软硬组织修复、美容填充、药物载体等。 保存条件:长期保存于-20 oC冷冻,真空包装条件下。短期可保存于真空干燥器。
使用方法及案例: 一、骨组织工程支架 1、溶液浇铸/粒子沥滤法 In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(l-lactide). Biomaterials, 2009, 30:58-70. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(l-lactide)-grafted nanohydroxyapatite for bone tissue engineering. Biomacromolecules, 2011, 12(7):2667-2680. In vivo degradation behavior of porous composite scaffolds of poly(lactide-co-glycolide) and nano-hydroxyapatite surface grafted with poly(L-lactide). Chinese Journal of Polymer Science, 2014, 32(6):805-816. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cell (MSCs) for bone regeneration. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 2017, 18(11):963-976. 2、熔融成型/粒子沥滤法 The Nano-Composite Scaffold of Poly(lactide-co-glycolide) andHydroxyapatite Surface-Grafted with L-lactic Acid Oligomer for Bone Repair. Acta Biomaterialia, 2009, 5:2680-2692. Enhanced in vitro mineralization and in vivo osteogenesis of composite scaffolds through controlled surface grafting of L-lactic acid oligomer on nano-hydroxyapatite. Biomacromolecules, 2016, 17(3):818-829. 3、单溶剂冷冻成型法 Preparation ofPorous Nanocomposite Scaffolds with Honeycomb Monolith Structure by OnePhase Solution Freeze-Drying Method. Chinese Journal of Polymer Science, 2011, 29(2):215-224. 4、可注射原位固化成型法 An injectable hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. Materials Science and Engineering: C, 2017, 80:326-334. In vitro degradation behavior of hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. Journal of Materials Chemistry B, 2017, 5(44):8695-8706. 5、静电纺丝载药纤维毡 Methylsulfonylmethane-loaded electrospun poly(lactide-coglycolide) mats for cartilage tissue engineering. RSC Advances, 2015, 5:96725-32. 6、熔融旋碟纺丝纤维 A Novel Nano/Micro-Fibrous Scaffold by Melt-Spinning Method for Bone Tissue Engineering. Journal of Bionic Engineering, 2015, 12(1):117-128. Improved cellular infiltration into 3D interconnected microchannel scaffolds formed by using melt-spun sacrificial microfibers. RSC Advances, 2016, 6:2131-33. 7、溶剂交换3D打印成型法 3D-printing of solvent exchange deposition modeling (SEDM) for a bilayered flexible skin substitute of poly (lactide-co-glycolide) with bioorthogonally engineered EGF. Materials Science & Engineering C, 2020, 112:110942. 8、微流控二流法制备微载体(微球) Assessment of nano-Hydroxyapatite and Poly (Lactide-co-Glycolide) nanocomposite microspheres fabricated by novel airflow shearing technique for in vivo bone repair.Materials Science and Engineering: C,2021, 128: 112299 二、涂膜法研究成骨活性 聚乳酸接枝改性纳米生物玻璃/PLGA复合材料的制备、表面性质及生物活性. 高等学校化学学, 2009, 30(5):1018-1023. 改性纳米羟基磷灰石/PLGA复合材料的制备及生物活性. 高等学校化学学, 2009, 30(7):1439-1444. 脉冲电刺激对改性纳米羟基磷灰石/聚丙交酯-乙交酯复合材料表面成骨细胞增殖及成骨活性的影响[J]. 中国组织工程研究与临床康复, 2009, 13(16):3065-3069. 电活性可生物降解纳米复合材料PAP/op-HA/PLGA的制备及成骨活性. 高等学校化学学, 2011, 32(5):1181-1187. Photo-immobilization of Bone Morphogenic Protein 2 on PLGA/HA Nanocomposite to Enhance the Osteogenesis of Adipose-Derived Stem Cells. RSC Adv., 2016, 6:20202-20210. Improved Cell Adhesion and Osteogenesis of op-HA/PLGA Composite by Poly(dopamine)-Assisted Immobilization of Collagen Mimetic Peptide and Osteogenic Growth Peptide. ACS Applied Materials & Interfaces, 2016, 8(40):26559-69. 三、功能材料开发 1、载IGF-1微载体用于骨再生 Biodegradable Microcarriers of Poly(Lactide-co-Glycolide) and Nano-Hydroxyapatite Decorated with IGF-1 via Polydopamine Coating for Enhancing Cell Proliferation and Osteogenic Differentiation. Macromol Biosci., 2015, 15(8):1070-80. DOPA-derived electroactive copolymer and IGF-1 immobilized poly(lactic-co-glycolic acid)/hydroxyapatite biodegradable microspheres for synergistic bone repair.Chemical Engineering Journal, 2021, 416: 129129 2、可MRI示踪材料 In vivo MRI and X-ray bifunctional imaging of polymeric composite supplemented with GdPO4*H2O nanobundles for tracing bone implant and bone regeneration. Advanced Healthcare Materials, 2016, 5(17):2182-90. Incorporation of Gadolinium Oxide and Gadolinium Oxysulfide Microspheres: MRI/CT Monitoring and Promotion of Osteogenic/Chondrogenic Differentiation for Bone Implants.ChemNanoMat,2020,6(12):1819-1832. Biodegradable GdPO4·H2O/PLGA microcarriers for stem cell delivery and non-invasive MRI translocation tracing[J]. Journal of Materials Science, 2022, 57(28):13632-13646. 3. 载DOPA-IGF-1用于神经再生 A Novel Approach via Surface Modification of Degradable Polymers With Adhesive DOPA-IGF-1 for Neural Tissue Engineering. J Pharm Sci., 2019, 108(1):551-562. Nerve implants with bioactive interfaces enhance neurite outgrowth and nerve regeneration in vivo. Colloids and Surfaces B: Biointerfaces, 2022, 218: 112731. 4、 DOPA-NGF微载体用于神经再生 Bioorthogonal DOPA-NGF activated tissue engineering microunits for recovery from traumatic brain injury by microenvironment regulation. Acta Biomaterialia, 2022, 150: 67-82. 5、电活性导电复合材料 电活性和生物活性多巴-胰岛素样生长因子-1@聚(乙交酯-丙交酯)/聚(3-己基噻吩)静电纺丝纤维的制备及神经组织工程应用.应用化学,2019, 36 (9): 1003-1014. Electroactive Composite of FeCl3 -Doped P3HT/PLGA with Adjustable Electrical Conductivity for Potential Application in Neural Tissue Engineering.Macromol Biosci. 2019,19(10):e1900147. 6、磁响应性智能材料 Synergistic osteogenesis promoted by magnetically actuated nano-mechanical stimuli. Nanoscale, 2019, 11, 23423-2343. Spatiotemporal magnetocaloric microenvironment for guiding the fate of biodegradable polymer implants. Advanced Functional Materials, 2021, 31(15): 2009661. 7、电和磁共响应性智能材料 The electric and magnetic responsive nanocomposite of GdPO4·H2O/P3HT/PLGA with electrical stimulation for synergistically enhancing the proliferation and differentiation of pre-osteoblast.New Journal of Chemistry,2019,43:17315-17326 8、可载干细胞PVA /PLGA双层敷料 Stem Cell Seeded and Silver Nanoparticles Loaded Bilayer PLGA/PVA Dressings for Wound Healing.Macromolecular Bioscience, 2020,20(10):e2000141 9、压电性双示踪智能材料 Gadolinium-doped BTO Functionalized Nanocomposites with Enhanced Dual-imaging of MRI and X-Ray to Simulate the Electrical Properties of Bone”. ACS Applied Materials & Interfaces, 2020, 12(44): 49464-49479 |