1)生物降解纳米复合材料与骨科器件

  传统的骨科植入与固定材料主要以金属和陶瓷材料为主,由于缺乏生物降解性,多数情况下需要二次手术取出,增加患者痛苦和医疗负担。因此,发展生物可吸收的人工骨材料与器件,可以避免二次手术,减轻患者的痛苦与医疗费用,对于促进骨外科临床技术的变革具有重要意义。我们采用生物相容性好的聚乳酸(PLA)等生物降解高分子作为基体材料,通过与羟基磷灰石、生物玻璃等无机纳米粒子共混复合制备纳米增强型高分子复合材料,开发相应的加工方法和工艺,制备一定形状和结构的可吸收人工骨材料和固定融合器件,以满足临床骨科缺损修复和固定融合的治疗需要。在此基础上,设计制备具有X线或核磁影像增强效应的无机纳米粒子,开发体内可示踪和降解可控的骨科功能复合材料。目前,开发的部分材料与器件在动物试验中取得了良好的修复效果,接近临床应用的水平, 正在进行临床申报和成果转化。

image_gallery-170

Biomaterials, 2009, 30, 58-70,IF: 8.312

image_gallery-171

Biomacromolecules 2011; 12 (7): 2667-80

image_gallery-172

 

2)高分子创面敷料与人工皮肤

  大面积烧烫伤后的创面治疗一直是临床上的难题。为避免感染和水分丢失导致患者休克,甚至死亡,需要及时进行创面覆盖和皮肤移植。自体皮虽然理想但来源有限,异体或异种皮往往存在免疫排斥或传播疾病的风险。我们的研究目标是通过仿生设计,开发一定的加工工艺,将高分子水凝胶和生物降解高分子相结合,制备具有仿生结构的复合型创面敷料或人工皮肤;同时,引入纳米银或含银化合物,使其具备抗感染功能,以满足各种类型创面覆盖的需要。在此基础上,通过种植自体或胚胎来源的表皮细胞和真皮成纤维细胞,发展具有活细胞成分的组织工程皮肤产品。该技术和产品已经申请相关发明专利4项。

image_gallery-173

3)可吸收医用棉

  临床上传统医用棉均来自于棉花,属植物纤维。这些材料一旦遗留体内会引起严重的异物反应,给病人造成痛苦。我们通过自行研制装置和开发相应的加工工艺,将生物降解的医用聚乳酸(PLA)等聚酯材料制备成仿生的可吸收无纺棉纤维,并通过表面处理技术,使其亲水性增强。该纤维可以编织成各种制品,还可以担载各种治疗药物,形成不同临床用途的产品,如具有促凝、抗凝、抗感染或促进组织再生等作用的产品,临床应用广,市场需求大,工艺简单。已经获得实用新型专利1项,申请和公开相关发明专利2项。

image_gallery-174

4)生物降解细胞微载体

  应用细胞微载体和生物反应器进行细胞大规模培养,是未来制药业、生物制品行业、和干细胞保存与应用领域的关键技术。通常微载体只是为细胞生长提供依附界面,相对于培养瓶的2D培养,这种3D悬浮培养方式可极大地提高蛋白药物、生物制品或者干细胞的生产效率。在干细胞领域,采用生物可降解材料制备的微载体,可避免酶消化过程对细胞的损伤,将干细胞/微载体培养物直接经注射或与水凝胶、组织工程支架结合应用于体内。课题组采用天然或合成可吸收高分子,开发了系列大小均一、尺寸可控的生物降解微载体,并申请了相关专利。这些微载体经过特异的表面修饰,适合用于不同干细胞的生长和分化诱导,为未来干细胞的临床应用提供新的途径,具有广阔的产业化前景。

image_gallery-175image_gallery-176

        Macromol Biosci. 2015,15(8):1070-80