载体是用于细胞生长的可扩展支撑表面,其能够实现高水平的扩增,并且与人间充质干细胞(hMSC)的扩增特别相关。这项研究的目的是开发一种用于hMSC扩展的基于聚乙二醇(PEG)的微载体涂层。市售的微载体不提供微载体表面性质的可定制性,包括弹性模量和表面细胞粘附配体。威斯康星大学麦迪逊分校矫形外科和康复学系的William L. Murphy实验室先前已经证明,在基于PEG的水凝胶上调节这些材料特性可以调节重要的细胞生长特性,例如细胞附着和扩增,这在基于微载体的培养中很重要。曙红Y吸附到聚苯乙烯微载体上,并用作可见光下硫醇烯聚合反应的光引发剂。所得的PEG涂层厚度超过100 µm,并位于微载体表面。该厚度对于细胞对水凝胶涂层的机械性能起反应至关重要,并且涂层的微载体支持hMSC的附着和扩展。hMSC的扩增对无血清培养基中的包被的微载体非常有利,在生长阶段在25 h以下的时间加倍,并且在微载体上培养后保留了成骨和成脂的分化能力。这些带有定义的合成涂层的微载体能够为细胞扩增提供可定制的表面,这些表面可能适用于各种生物制造应用。hMSC的扩增对无血清培养基中的包被的微载体非常有利,在生长阶段在25 h以下的时间加倍,并且在微载体上培养后保留了成骨和成脂的分化能力。这些带有定义的合成涂层的微载体能够为细胞扩增提供可定制的表面,这些表面可能适用于各种生物制造应用。hMSC的扩增对无血清培养基中的包被的微载体非常有利,在生长阶段在25 h以下的时间加倍,并且在微载体上培养后保留了成骨和成脂的分化能力。这些带有定义的合成涂层的微载体能够为细胞扩增提供可定制的表面,这些表面可能适用于各种生物制造应用。
Microcarriers are scalable support surfaces for cell growth that enable high levels of expansion, and are particularly relevant for expansion of human mesenchymal stem cells (hMSCs). The goal of this study is to develop a poly(ethylene glycol) (PEG)‐based microcarrier coating for hMSC expansion. Commercially available microcarriers do not offer customizability of microcarrier surface properties, including elastic modulus and surface cell adhesion ligands. The lab of William L. Murphy From Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison has previously demonstrated that tuning these material properties on PEG‐based hydrogels can modulate important cellular growth characteristics, such as cell attachment and expansion, which are important in microcarrier‐based culture. Eosin‐Y is adsorbed to polystyrene microcarriers and used as a photoinitiator for thiol‐ene polymerization under visible light. Resultant PEG coatings are over 100 µm thick and localized to microcarrier surfaces. This thickness is relevant for cells to react to mechanical properties of the hydrogel coating, and coated microcarriers support hMSC attachment and expansion. hMSC expansion is highly favorable on coated microcarriers in serum‐free media, with doubling times under 25 h in the growth phase, and retained osteogenic and adipogenic differentiation capacity after culture on microcarriers. These microcarriers with defined, synthetic coatings enable tailorable surfaces for cell expansion that may be suitable for a variety of biomanufacturing applications.
DOI: https://doi.org/10.1002/adhm.201700072
周小松