精确的神经电刺激是促进神经元再生的一种手段,对于患有神经外伤和神经退行性疾病的患者而言,是一种有前途的解决方案在本研究中,彭飞副教授带领其团队首次成功证明了S.platensis@Fe3O4@tBaTiO3微电机可在单细胞水平上实现无线可控的定向运动和精确刺激。通过将S.platensis、磁性Fe3O4纳米颗粒和压电BaTiO3纳米颗粒相整合,制造了一种通用的、多功能的、生物混合的软微电机。结果表明,该微电机系统可以在低强度旋转磁场下以高度可控的方式实现导航。所开发的系统可以实现单细胞靶向运动,然后可由压电效应将超声能量原位转换为电信号,从而精确地诱导目标类神经干细胞的分化。这种高精度刺激类神经干细胞的新方法为微电机开辟了新的应用领域,并且在精确的神经元再生治疗方面具有极好的潜力。

Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem-Like Cell Stimulation

        Precise neural electrical stimulation, which is a means of promoting neuronal regeneration, is a promising solution for patients with neurotrauma and neurodegenerative diseases. In this study, wirelessly controllable targeted motion and precise stimulation at the single-cell level using S.platensis@Fe3O4@tBaTiO3 micromotors are successfully demonstrated for the first time by Fei Peng associate professor and her team.. A highly versatile and multifunctional biohybrid soft micromotor is fabricated via the integration of S.platensis with magnetic Fe3O4 nanoparticles and piezoelectric BaTiO3 nanoparticles. The results show that this micromotor system can achieve navigation in a highly controllable manner under a low-strength rotating magnetic field. The as-developed system can achieve single cell targeted motion and then precisely induce the differentiation of the targeted neural stem-like cell by converting ultrasonic energy to an electrical signal in situ owing to the piezoelectric effect. This new approach toward the high-precision stimulation of neural stem-like cells opens up new applications for micromotors and has excellent potential for precise neuronal regenerative therapies.

DOI: 10.1002/adfm.201910108

郝莉莉